
Active Cell Balancing using Low Cost
Components

by

Dorin Clisu

Bachelor Thesis in Electrical and Computer Engineering

Prof.Dr. Werner Bergholz, Uwe Pagel

Date of Submission: August 31, 2016

Jacobs University — School of Engineering and Science

With my signature, I certify that this thesis has been written by me using only the indicated
resources and materials. Where I have presented data and results, the data and results
are complete, genuine, and have been obtained by me unless otherwise acknowledged;
where my results derive from computer programs, these computer programs have been
written by me unless otherwise acknowledged. I further confirm that this thesis has not
been submitted, either in part or as a whole, for any other academic degree at this or
another institution.

Dorin Gabriel Clisu Bremen, August 31, 2016

Abstract

Lithium-Polymer batteries consist of multiple cells stacked in series to deliver a
specific voltage. Because minute differences in internal characteristics lead to un-
equal cell voltages during charge and discharge cycles, an electronic circuit is often
used to balance the charge between cells in order to prevent damage. This thesis
presents a novel circuit using inductors applying energy transfer between the cells.
The ability to redistribute the energy from any subset of cells to the complementary
subset in a single cycle minimizes the number of balancing cycles and thus increases
the dynamic efficiency for an arbitrary cell voltage distribution. The circuit has been
implemented using low cost parts with a microcontroller for reading the voltages,
running the balancing algorithm and generating control PWM pulses. Balancing cur-
rents of up to 0.9A and static efficiency of up to 59% have been achieved using
non-optimized gate drivers.

iii

Contents

1 Introduction 1

2 Circuit Design 3
2.1 Controller Selection . 3
2.2 Novel Topology Details . 3
2.3 Charge Transfer Modes . 5

2.3.1 CDDD . 8
2.3.2 DCCC . 9
2.3.3 CDCC . 10
2.3.4 DDCD . 11
2.3.5 DDCC . 12
2.3.6 DCDC . 13
2.3.7 CDDC . 14
2.3.8 DCCD . 15

2.4 Modes Overview . 16
2.5 Optimum Algorithm . 16

3 Microcontroller Firmware 18
3.1 ADC Accuracy . 19
3.2 PWM Speed and Resolution . 20

4 Circuit Implementation 25
4.1 Practical details . 25

4.1.1 Key Components . 26
4.2 PCB Layout . 27
4.3 Assembly . 27

5 Performance Testing 29
5.1 Static measurements . 29

6 Conclusions 30

A APPENDIX 31
A.1 Firmware code . 31
A.2 Acronyms . 31

iv

1 Introduction

Active cell balancing implies charge / energy transfer between cells, coordinated by a
controller that knows the voltage / state-of-charge of the cells. Naturally, energy flows
from higher voltage potential towards lower voltage potential, however that is impossible
to accomplish within a series stack of cells using naive electrical connections. Therefore
we need to transfer a small fraction of the higher voltage cell energy into a temporary
element that will then transfer the energy to the lower voltage cell. The process would
be repeated quickly such that there appears to be a continuous flow of energy. Two
suitable elements are capacitors and inductors due to their high efficiency for short term
energy storage. Capacitors store energy in the electric field of the charge while inductors
store energy in the magnetic field of the current, as such their mode of usage differs
significantly. A special type of inductor is the transformer which in turn can be of two
types – forward and flyback.

Existing active balancing solutions include:

• Switched Capacitor [3]

• Adjacent Inductor [8] [7]

• Simplified Adjacent Inductor [1]

• Shared Dual Inductor [2]

• Shared-Primary Forward Transformer [3]

• Shared-Primary Flyback Transformer [5]

• Multiple Flyback Transformer [9]

This thesis brings a small modification to the Simplified Adjacent Inductor Topology([1])
in order to ease the harsh MOSFET control requirements. While the proposed circuit
topology could theoretically work for an arbitrary cell number of any type (Fig. 1), this
work is a case study on balancing 4 Li-Po cells.

1

Figure 1: Novel cell balancing topology (simplified)

2

2 Circuit Design

2.1 Controller Selection

Optimum cell balancing requires closed loop control – the voltage of each cell is mea-
sured, the state of the system is determined, an algorithm determines the optimum cor-
rection, the controller applies the correction to the cells and the process is repeated.

Figure 2: Typical single-input, single-output control feedback loop

Many solutions use separate ICs for voltage monitoring, switching control and higher
level control (algorithms). The key idea in order to achieve low-cost is to use the inte-
grated functionality of a microcontroller. Critical requirements are ADC channel count &
resolution and output channel count & speed. Other important aspects are building tools
that are easy to use, various peripherals (UART, CAN) for external communication and
good general processing power for supporting complex algorithms.

The microcontroller of choice in this thesis is the STM32 F103 from STMicroelectronics.
It is a popular MCU since its adoption on the LeafLabs platform, packing a good amount
of functionality and speed for a unit price of 1-2 EUR. A small, inexpensive (4 EUR) de-
velopment board is also available and the Arduino Hardware Abstraction Layer can be
used for quick firmware setup and development, leaving low level C or register I/O only
for the time critical output control.

Relevant specifications for our application are:

• 2 x 12 bit ADC at 1Msample/s, 8 channels each

• 31 x GPIO pins on the dev board with output speed up to 18MHz

• 12 x PWM pins on the dev board

• 3 x 16 bit general purpose timers with overflow interrupts

• 72MHz CPU with 20kB SRAM

• USART, USB, I2C, SPI, CAN interfaces

2.2 Novel Topology Details

A novel topology is proposed as a small modification to the existent adjacent inductor
circuit [1]. The idea came while trying to solve the complicated system of equations
describing the original circuit by splitting the problem into several smaller cases. Each

3

Figure 3: STM32F103xx performance line block diagram [12]

case represents an unique mode of operation consisting of transferring charge from a
given subset of cells to the rest of the cells, and will be analyzed in the next section.

The modification consists of adding a bidirectional on/off switch on each of the inductor
branches by using 2 back-to-back MOSFETs as shown in Fig. 4. This allows us to discon-
nect any unused inductor that would otherwise interfere with a desired charge transfer,
because most of the time only 1 or 2 inductors need to be used. Moreover, the new topol-
ogy has the potential to be more energy efficient for random charge transfer because by
”deactivating” the unused inductors for a specific mode, charge can be channeled more
directly between distanced cells instead of being shuttled from inductor to inductor in a
chain (until it reaches the destination) as it happens with the original circuit.

This would require 3 more outputs from the microcontroller but it is not an issue since we
can use any GPIO (no need for precise timing and synchronisation). The cost impact of
adding 6 more MOSFETs has been estimated (with preliminary market research) to be
relatively low because the price of a suitable MOSFET (44A, 10mΩ) is small (0.1-0.2EUR)
compared to the cost of a suitable inductor (0.5-1EUR for 10µH, 5A).

4

V
1

4V V
2

4V V
3

4V V
4

4V

L
1

10µ

L
2

10µ

L
3

10µ

M
1

M
2

M
3

M
4

V
5

V
6

V
7

V
8

R
1

1k

R
2

1k

R
3

1k

D
1D D
2D D
3D D
4D

M5 M6 M7

M8 M9 M10

V
94

V
104

V
114

.tran
 0 192u

 0

Figure 4: Proposed novel topology with inductor branch switches

2.3 Charge Transfer Modes

Reviewing basic inductor theory:

V = L · dI(t)

dt

Assuming the voltage does not change significantly on a short timescale, the equation
becomes:

I(t) = I(0) +
1

L

∫ t

0
V dt = I(0) +

V · t
L

There are 2 modes in which an inductor can operate in a DC circuit [13]:

• Discontinuous mode - the inductor is energized up to a peak current and then it is
discharged completely before starting a new cycle.

• Continuous mode - the inductor is re-energized before it is discharged completely,
allowing it to carry higher average current with less ripple while under the same
current peak limit.

Because the continuous mode implies switching on/off non-zero currents, very fast MOS-
FET rise and fall times are needed (otherwise high switching losses occur) which pose a
practical problem for the gate drivers. Additionally, closed-loop current control is needed
which would greatly complicate the circuit. For these reasons, the discontinuous mode
will be used, meaning I(0) = 0 so we can write:

Ipeak =
VC · tC
L

=
VD · tD
L

VD is the sum voltage of the cells that are being discharged for time tD and and VC is the
sum voltage of the cells being charged for time tC , and L is either a single inductor L1

or 2 series inductors with equivalent inductance 2L1. While tD can be controlled by the
switching MOSFETs, any peak current can be achieved by generating pulses as functions

5

of inductance, current and cell voltage:

tD = L · Ipeak ·
1

VD
and tC = L · Ipeak ·

1

VC

In discontinuous mode, tC can only be partially controlled because the diodes will conduct
current as long as any inductor still has energy to discharge, so while it is optional to
generate pulses synchronised to the charging phases, this would increase the efficiency
(details in the next sections).

The proposed circuit can transfer current from any subset of cells to the complementary
subset. Each subset defines a mode of operation for the circuit, and there are N(4) such
modes, as shown in Tab. 1:

N(n) =
n−1∑
i=1

(
n

i

)
= 2n − 2 = 24 − 2 = 14

i mirror mode cell1 cell2 cell3 cell4

1 9 CDDD charg disch disch disch
2 10 DCCC disch charg charg charg
3 11 CDCC charg disch charg charg
4 12 DDCD disch disch charg disch
5 13 DDCC disch disch charg charg
6 14 DCDC disch charg disch charg
7 7 CDDC charg disch disch charg
8 8 DCCD disch charg charg disch
9 1 DDDC disch disch disch charg

10 2 CCCD charg charg charg disch
11 3 CCDC charg charg disch charg
12 4 DCDD disch charg disch disch
13 5 CCDD charg charg disch disch
14 6 CDCD charg disch charg disch

Table 1: Charge transfer modes

From the 14 modes, 2 are symmetrical while the rest are mirrored pairs, leaving only
14− (14− 2)/2 = 8 unique modes which will be analyzed.

A balancing cycle consists of a set of (parallel) discharging phases and a set of (parallel)
charging phases. It must have a period long enough to ensure that the inductors remain
in the discontinuous mode and short enough to have as little ripple current as possible.

Tcycle = max(tD(i)) +max(tC(j)) i, j = 1, 4

The maximum symbolic value of the tD and tC phases can be determined before runtime
in most modes but not all (V (i)+V (j) > V (k) ∀i, j, k = 1, 4 assuming 3V −4.2V as valid
voltage range for the cells), because the formulas depend on the runtime cell voltages.
When generating the 4 pulses with widths given by tD and tC , they must be offset by
relative delays tdelay(i) because the transition from the discharging phases to charging
phases must happen simultaneously for all the cells.

For each mode, the 3 branch switches are set such that charge transfer is optimized in
the relevant direction.

6

For intuitive visualization, the circuits are drawn in Falstad Circuit Simulator, green / red
colors representing + / - voltage gradients. The waveforms are example results from the
LTSpice simulation (V 1 = V 2 = V 3 = V 4 = 4V , L1 = 10µH and Ipeak = 4.8A).

7

2.3.1 CDDD

(a) Discharge phase (b) Charge phase

(c) Cell currents (d) MOSFET pulses

Figure 5: CDDD mode configuration

tD4 = L1Ipeak · 1
V 2+V 3+V 4 tC4 = 0 tdelay4 = 0

tD3 = L1Ipeak · 1
V 2+V 3+V 4 tC3 = 0 tdelay3 = 0

tD2 = L1Ipeak · 1
V 2+V 3+V 4 tC2 = 0 tdelay2 = 0

tD1 = 0 tC1 = L1Ipeak · 1
V 1 tdelay1 = tD2

Tcycle = tD2 + tC1 = L1Ipeak · V 1+V 2+V 3+V 4
V 1·(V 2+V 3+V 4)

Table 2: CDDD mode equations

8

2.3.2 DCCC

(a) Discharge phase (b) Charge phase

(c) Cell currents (d) MOSFET pulses

Figure 6: DCCC mode configuration

tD4 = 0 tC4 = L1Ipeak · 1
V 2+V 3+V 4 tdelay4 = tD1

tD3 = 0 tC3 = L1Ipeak · 1
V 2+V 3+V 4 tdelay3 = tD1

tD2 = 0 tC2 = L1Ipeak · 1
V 2+V 3+V 4 tdelay2 = tD1

tD1 = L1Ipeak · 1
V 1 tC1 = 0 tdelay1 = 0

Tcycle = tD1 + tC2 = L1Ipeak · V 1+V 2+V 3+V 4
V 1·(V 2+V 3+V 4)

Table 3: DCCC mode equations

9

2.3.3 CDCC

(a) Discharge phase (b) Charge phase

(c) Cell currents (d) MOSFET pulses

Figure 7: CDCC mode configuration

tD4 = 0 tC4 = L1Ipeak · 1
V 3+V 4 tdelay4 = tD2

tD3 = 0 tC3 = L1Ipeak · 1
V 3+V 4 tdelay3 = tD2

tD2 = L1Ipeak · 2
V 2 tC2 = 0 tdelay2 = 0

tD1 = 0 tC1 = L1Ipeak · 1
V 1 tdelay1 = tD2

Tcycle = tD2 + tC1 = L1Ipeak · 2V 1+V 2
V 1·V 2

Table 4: CDCC mode equations

10

2.3.4 DDCD

(a) Discharge phase (b) Charge phase

(c) Cell currents (d) MOSFET pulses

Figure 8: DDCD mode configuration

tD4 = L1Ipeak · 1
V 4 tC4 = 0 tdelay4 = 0

tD3 = 0 tC3 = L1Ipeak · 2
V 3 tdelay3 = tD4

tD2 = L1Ipeak · 1
V 1+V 2 tC2 = 0 tdelay2 = tD4− tD2

tD1 = L1Ipeak · 1
V 1+V 2 tC1 = 0 tdelay1 = tD4− tD1

Tcycle = tD4 + tC3 = L1Ipeak · V 3+2V 4
V 3·V 4

Table 5: DDCD mode equations

11

2.3.5 DDCC

(a) Discharge phase (b) Charge phase

(c) Cell currents (d) MOSFET pulses

Figure 9: DDCC mode configuration

tD4 = 0 tC4 = L1Ipeak · 1
V 3+V 4 tdelay4 = tD1

tD3 = 0 tC3 = L1Ipeak · 1
V 3+V 4 tdelay3 = tD1

tD2 = L1Ipeak · 1
V 1+V 2 tC2 = 0 tdelay2 = 0

tD1 = L1Ipeak · 1
V 1+V 2 tC1 = 0 tdelay1 = 0

Tcycle = tD1 + tC3 = L1Ipeak · V 1+V 2+V 3+V 4
(V 1+V 2)·(V 3+V 4)

Table 6: DDCC mode equations

12

2.3.6 DCDC

(a) Discharge phase (b) Charge phase

(c) Cell currents (d) MOSFET pulses

Figure 10: DCDC mode configuration

tD4 = 0 tC4 = L1Ipeak · 1
V 4 tdelay4 = tD3

tD3 = L1Ipeak · 2
V 3 tC3 = 0 tdelay3 = 0

tD2 = 0 tC2 = L1Ipeak · 2
V 2 tdelay2 = tD3

tD1 = L1Ipeak · 1
V 1 tC1 = 0 tdelay1 = tD3− tD1

Tcycle = tD3 + tC2 = L1Ipeak · 2V 2+2V 3
V 2·V 3

Table 7: DCDC mode equations

13

2.3.7 CDDC

(a) Discharge phase (b) Charge phase

(c) Cell currents (d) MOSFET pulses

Figure 11: CDDC mode configuration

tD4 = 0 tC4 = L1Ipeak · 1
V 4 tdelay4 = tD2

tD3 = L1Ipeak · 2
V 2+V 3 tC3 = 0 tdelay3 = 0

tD2 = L1Ipeak · 2
V 2+V 3 tC2 = 0 tdelay2 = 0

tD1 = 0 tC1 = L1Ipeak · 1
V 1 tdelay1 = tD2

Tcycle = runtime computation

Table 8: CDDC mode equations

14

2.3.8 DCCD

(a) Discharge phase (b) Charge phase

(c) Cell currents (d) MOSFET pulses

Figure 12: DCCD mode configuration

tD4 = L1Ipeak · 1
V 4 tC4 = 0 tdelay4 = tD1− tD4

tD3 = 0 tC3 = L1Ipeak · 2
V 2+V 3 tdelay3 = tD1

tD2 = 0 tC2 = L1Ipeak · 2
V 2+V 3 tdelay2 = tD1

tD1 = L1Ipeak · 1
V 1 tC1 = 0 tdelay1 = 0

Tcycle = runtime computation

Table 9: DCCD mode equations

15

2.4 Modes Overview

Considering V 1 = V 2 = V 3 = V 4 = V for simplification, an overview with the modes and
their switch configurations, pulse timings and cell currents can be generated (Tab. 10).
Exact timings are computed during runtime.

i mode sw1 sw2 sw3 T t1 t2 t3 t4 d1 d2 d3 d4

1 CDDD on off off 4/3 1 1/3 1/3 1/3 1/3 0 0 0
2 DCCC on off off 4/3 1 1/3 1/3 1/3 0 1 1 1
3 CDCC on on off 3 1 2 1/2 1/2 2 0 2 2
4 DDCD off on on 3 1/2 1/2 2 1 1/2 1/2 1 0
5 DDCC off on off 1 1/2 1/2 1/2 1/2 0 0 1/2 1/2
6 DCDC on on on 4 1 2 2 1 1 2 0 2
7 CDDC on off on 2 1 1 1 1 1 0 0 1
8 DCCD on off on 2 1 1 1 1 0 1 1 0
9 DDDC off off on 4/3 1/3 1/3 1/3 1 0 0 0 1/3

10 CCCD off off on 4/3 1/3 1/3 1/3 1 1 1 1 0
11 CCDC off on on 3 1/2 1/2 2 1 2 2 0 2
12 DCDD on on off 3 1 2 1/2 1/2 0 1 1/2 1/2
13 CCDD off on off 1 1/2 1/2 1/2 1/2 1/2 1/2 0 0
14 CDCD on on on 4 1 2 2 1 2 0 2 1

Table 10: Normalized timings overview; T =
TcycleV
L1Ipeak

; t(i) =
tD/CV

L1Ipeak
; d(i) =

tdelayV
L1Ipeak

;

After the pulse timings have been determined for given cell voltages, inductance and
peak current, the actual cell currents must be computed in order to properly control the
charge balancing process. By convention, Ipeak is the absolute value of the peak current,
the discharging current ID is negative and the charging current IC is positive. Averaging
over a cycle period we get for discharging:

ID =
−1

Tcycle
·
∫ Tcycle

0
I(t)dt =

−1

Tcycle
·
∫ tD

0

t · Ipeak
tD

dt = Ipeak ·
−tD

2Tcycle
= Ipeak ·

−dutyD%

2

Similarly for charging:

IC = Ipeak ·
dutyC%

2

Under the same assumption that all cell voltages are equal (they would practically not
be allowed to go too far apart), the duty cycles (ratio of pulse width to pulse period) are
fixed for a given mode. Controlling the balancing consists of choosing the right mode
and scaling the balancing currents with respect to Ipeak which is determined by the cycle
period (i.e. switching frequency).

An overview of the balancing currents can be seen in Tab. 11. Exact values are computed
during runtime.

2.5 Optimum Algorithm

Based on the measured cell voltages, the best mode must be selected. In order to solve
the problem, we need to model the dynamics, set a goal and an associated loss function.

16

i mode I1 I2 I3 I4

1 CDDD 3/8 -1/8 -1/8 -1/8
2 DCCC -3/8 1/8 1/8 1/8
3 CDCC 1/6 -1/3 1/12 1/12
4 DDCD -1/12 -1/12 1/3 -1/6
5 DDCC -1/4 -1/4 1/4 1/4
6 DCDC -1/8 1/4 -1/4 1/8
7 CDDC 1/4 -1/4 -1/4 1/4
8 DCCD -1/4 1/4 1/4 -1/4
9 DDDC -1/8 -1/8 -1/8 3/8

10 CCCD 1/8 1/8 1/8 -3/8
11 CCDC 1/12 1/12 -1/3 1/6
12 DCDD -1/6 1/3 -1/12 -1/12
13 CCDD 1/4 1/4 -1/4 -1/4
14 CDCD 1/8 -1/4 1/4 -1/8

Table 11: Normalized currents overview; I(i) =
ID/C

Ipeak

A battery cell can be modeled as a large capacitor with capacity C:

V (t) = V (0) +
1

C
·
∫ t

0
I(t)dt

Because 1/C is relatively small, the integral can be approximated by Riemann summation
with T = fixed time for which a mode (constant balancing current) is applied:

V [n] = V [0] +
1

C
·
n=t/T∑
i=0

I[i] · T

V [k + 1] = V [k] +
T

C
· I[k]

The relation applies to each of the cells so we can write it in vector form:

Vk = 〈V 1[k], V 2[k], V 3[k], V 4[k]〉

Imode[k] = 〈I1[k], I2[k], I3[k], I4[k]〉

Vk+1 = Vk + constant · Imode[k]

Because the sum of the I(i) components is null (conservation of charge, neglecting con-
version losses), the sum of the voltage components is invariant. The goal is reaching the
balanced voltage vector:

Ṽ = 〈V 1+V 2+V 3+V 4
4 , V 1+V 2+V 3+V 4

4 , V 1+V 2+V 3+V 4
4 , V 1+V 2+V 3+V 4

4 〉

One approach is to reach the balanced state as quickly as possible. In this case the
loss function is the number of steps n of duration T (which lead to a balancing time of
t = nT) that needs to be minimized by choosing the sequence mode[i]. Finding the
global optimum of this function would require brute forcing with 14n computations which
is impossible in terms of available computing power.

17

However, finding the local optimum for every step is easy and should provide a good
enough solution. This involves choosing the mode which will lead to a minimum residual
voltage error (example Fig. 13):

Find mode for which errormode = minimum, mode = 1, 14

errormode = ‖Vk+1 − Ṽ‖2 = ‖Vk + constant · Imode − Ṽ‖2

This is a form of least squares optimization. The exact value of the constant should not
affect the result of the algorithm as long as it is small enough. In reality constant = T

C is
very small but in floating point arithmetic this would pose precision problems, so we can
take a value of 10−3 for example.

(a) Cell voltages (b) DCDC current mode is optimum

Figure 13: Example voltage and current vectors

Practically, the control loop consists of:

• Read voltage vector Vk from ADC sensor

• Compute average voltage vector Ṽ

• Compute the mode currents (as in Tab. 11)

• Compute errormode for all 14 modes

• Choose mode for minimum error and apply it

• Wait a period of time T and repeat the cycle (read voltage again, etc.)

All currents need to be rescaled back to Ipeak and this value must be computed such that
the system is stable and does not oscillate (more on this later).

3 Microcontroller Firmware

In this section the firmware controlling the A/D Converter and the Timer Hardware is de-
veloped and the performance of the microcontroller is measured. A small and breadboard-
friendly PCB hosting the MCU is used (Fig. 14).

18

Figure 14: STM32F103 CBT6 development board

Basic functions can be easily implemented and uploaded to the MCU via USB using Ar-
duino IDE (1.6.5) and a STM32 hardware core (available at http://stm32duino.com/).
For the more advanced features needed, direct register access code is inlined with ar-
duino code, according to the registers description in the STM32 Reference Manual.

3.1 ADC Accuracy

The maximum sample rate of the ADC is 1MHz, however the voltage of the battery cells
cannot significantly fluctuate so fast therefore a sampling period in the range of millisec-
onds is enough. Single conversions using analogRead() are made.

The resolution of the ADC is 12bit i.e. 4096 steps from 0 to 3.3V (default Vref). In order to
increase the resolution and the Signal-to-Noise Ratio (SNR), oversampling with averaging
is used. By taking 22n successive samples and averaging them, n bits of resolution are
gained [10]. In this application we average 256 samples to gain 4 additional bits and
obtain a 16bit ADC (65535 steps from 0 to 3.3V means 50µV step). Input samples are
placed in a ring buffer such that the last 256 samples can be efficiently summed up with
a recursive formula.

sum[n] = sum[n− 1] + sample[n]− sample[n− 256]

After practically eliminating quantization errors, the problem of ADC offset and differential
linearity error still exists and it can be up to ±5 LSB units [12] meaning 4mV which would
be the major bottleneck in achieving satisfactory ADC accuracy. In order to minimize
these errors, we use linear interpolation for the voltage range of interest.

valcalibrated = ref1 + (valraw −mref1) ·
ref2 − ref1

mref2 −mref1

where ref1 and ref2 span the range of interest and mref1 and mref2 are the measured
values of the ref1 and ref2 references during the calibration procedure.

19

http://stm32duino.com/

Computing the voltage from the ADC result is straightforward:

voltagemV =
3300 · valADC

4096

A set of 10 measurements was made by sending the voltage computed with the afore-
mentioned techniques via USB to display on a serial monitor (Tab. 12). The calculation
has been calibrated using 1000mV and 3000mV as voltage range endpoints, referenced
from the output of a potentiometer voltage divider adjusted to value within 0.1mV with the
aid of a multimeter.

Reference [mV] 1000 2000 3000
999.4 2000.4 3000.4
999.6 2000.2 2999.7
1000.01 1999.9 3000.5
999.3 2000.2 2999.4

Samples [mV] 998.9 2000.8 2999.8
999.5 2000.2 3000
999.7 2000 3000.3
999 1999.8 2999.7
1000.02 20001.2 3000.2
999.2 2001 3000.1

Average [mV] 999.46 2000.37 3000.01
Max error [mV] -1.1 1.2 -0.6
Avg error [mV] -0.54 0.37 0.01
σ error [mV] 0.38 0.47 0.35

Table 12: ADC Measurements

Although linear interpolation works better for smaller intervals, we have obtained satis-
factory results even for an interval spanning 60% of the ADC range. With an error of
under 1mV, the real error when measuring cells through a 6:1 divider (3.3V · 6 = 19.8V >
16.8V = 4.2V · 4) would be 6mV which is acceptable for detecting significant differences
between cells.

3.2 PWM Speed and Resolution

The microcontroller has 4 timers for general use (besides a systick timer used to keep
the on-board time and 2 watchdog timers optionally used to ensure system integrity).
Each of the 4 timers is a complex independent hardware block with various counting, pin
input/output and interrupt features.

Timer 2, Timer 3 and Timer 4 structure is shown in Fig. 15:

• Counter Register (CNT) is a 16bit register that counts up/down from a clock source,
which can be the main clock (72MHz) divided by a 16bit clock prescaler (Fig. 17).

• Auto-Reload Register (ARR) is a 16bit register that defines the overflow value of
CNT i.e. when CNT == ARR, CNT is reset to 0 (in up-counting mode) (Fig. 17).

• 4x Capture/Compare Registers (CCR1-4) are 16bit registers that can trigger an
interrupt or switch the corresponding output pin when CNT == CCRx (Fig. 18).

20

• Master/Slave Trigger Controller which defines the signals that start/stop the counter
and the signals generated by counter events. This can be used for synchronisation
between the timers (more on this later).

• Various Enable/Control/Mode Registers that define the interaction between the timer
components.

Timer 1 has additional features and structure is shown in Fig. 16:

• Each of the 4 Output Compare Channels has a complementary output with config-
urable dead-time insertion.

• Output Channels can be reset to a preconfigured state on an external pin event
(BKIN). This is useful in transistor drives which have an overcurrent detection circuit
that would signal the microcontroller through the BKIN pin.

• Corresponding Enable/Control/Mode Registers for the additional functions.

All registers can be read/written by the CPU for configuring the desired mode, after which
the timers work in parallel as independent hardware entities while the CPU is completely
free to do other processing jobs. The timers will be used to generate 4 independent
pulses of arbitrary frequency, width and phase-shift, one for each of the MOSFETs con-
trolling the inductor circuit (4 cells). PWM mode will ensure precise and glitch-free timing
that is required for efficient and safe power transfer.

Each timer has 4 output compare channels and pins so there are 16 PWM outputs but
not all of them are useful for the application due to the requirement of arbitrary phase-
shift of the PWM pulses – within each timer, the 4 compare outputs are either edge
aligned (rising edge for positive output polarity or falling edge for negative output polarity)
or center aligned. Therefore arbitrary phase-shift between the channels of a timer is not
possible.

However, the timers are can be offset relative to each other with any value by writing to
their CNT registers and have 1 output channel from each timer. Since the output channels
would be edge aligned with their counter and the ARR value would be the same for all
timers (charge transfer in periodic cycles), the outputs would maintain the offset of their
timers until the next CNT overwrite.

Careful consideration needs to be taken when overwriting the CNT registers. The CPU
has no atomic write for all of them so they would be written one at a time. If the prescaler
is small then the speed at which CNT is counting (updated by counter circuitry) is on
par with the speed of the CPU (which can have unpredictable overheads depending on
compiler optimizations) therefore this naive method is not reliable.

The solution is to pause the counters, update their value and restart them at the same
time. Since starting the counters is done by the CPU by setting the CEN (counter enable)
bit in their control register, the same problem of non-atomicity remains. In a naive imple-
mentation, they would be started sequentially and by the time the last timer is started,
the first one has already advanced in counting by an unpredictable value. Fortunately,
the timers are not completely independent and they share trigger lines. By configuring
the Master/Slave Trigger Controllers such that the enable signal on one master timer is
routed as enable signal for the other slave timers, starting all timers at the same time is
possible by only setting the CEN bit in the control register of the master timer.

The HardwareTimer class from the arduino hardware core provides methods for setting

21

Figure 15: STM32F10x General-Purpose Timer Architecture [11]

Figure 16: STM32F10x Advanced Timer Architecture [11]

22

Figure 17: Basic counter operation, clock PSC=2, ARR=36 [11]

Figure 18: Edge-aligned PWM, ARR=8, different compare values [11]

the PSC, CNT, ARR and CCRx registers but no method for timer synchronisation, there-
fore direct access to the Control Register 2 (CR2) and Slave Mode Control Register
(SMCR) has been inlined.

Operation of the timers has been verified and measured with a 24MHz USB Logic An-
alyzer. Because the minimum period that can be measured is 42ns, long enough duty
cycles have been applied and verified to comply within a reasonable error margin. Each
analyzer channel is the output from channel 1 of each timer (Fig. 19).

The closed-loop feedback control for balancing the cells means that the output control
sequence is modified according to cell voltage, which is expected to refresh once every
few milliseconds. The dead-time during a PWM sequence refresh is illustrated in Fig. 20.
Since the dead-time is only about 10µs with a period of no less than a few milliseconds,
its influence on the system operation is negligible.

Now the system is characterized such that the timing constrains can be used later for
deriving the control scheme. All timer registers are 16bit, therefore the dynamic range
is 65536:1. With no prescaler (PSC=1) the timer is driven with 72MHz therefore the

23

(a) Consecutive PWM pulses

(b) Arbitrary PWM pulses

Figure 19: Example PWM configurations

time step is 1/72MHz = 13.8ns. Such a small step means that we can adjust the shift
between different pulses fall and rise edges to be distanced enough with respect to the
fall and rise times (10-100ns) of the MOSFETs and avoid current shoot-through. The
maximum interval before overflow is 65536/72MHz = 910µs.

Min [ns] Max [ns] Step [ns]
period 13.9 910·103 13.9
width 0.0 period 13.9
offset 0.0 period− 13.9 13.9

Table 13: PWM pulse period / width / offset ranges and resolution

Tab. 13 provides the important characteristics of the PWM. Everything is relative to the
clock prescaler, therefore having a prescaler of N instead of 1 will multiply all the values
in the table by N . Most likely a prescaler of 1 will be used because the 910µs period is
already longer than enough for inductor values under 100µH and desired currents under
10A. Rule of thumb: 1V across a 1µH inductor will increase the current with 1A per
microsecond.

24

Figure 20: PWM sequence change between 2 arbitrary states

4 Circuit Implementation

4.1 Practical details

Up to this point, only a minimalist circuit has been displayed and simulated in order to
focus on the core functionality. Aside from additional trivial components required to im-
plement the circuit such as power circuitry associated with the controller and voltage
dividers for sensing, the MOSFET gate drivers represent a crucial component that needs
some attention. Previous simulations used parametrized power supplies for driving the
MOSFET gates, each with complete common-mode voltage separation. In reality, these
ideal power supplies are representing the microcontroller outputs which are all referenced
to ground, therefore there is no common-mode separation by default. Since the transis-
tor source (S) terminals are either floating in the circuit or getting swinged high and low
by nearby transistors, there needs to be common-mode separation between all the gate
drives. A gate driver is a circuit that provides common mode separation between a mi-
crocontroller output and a MOSFET source-gate port. It is often also used to buffer a
weak MCU output with a high current drive that switches the gate voltage faster in order
to minimize switching losses.

Specialized gate driver IC’s have been studied, however they were found to cost more
than the main switching transistors and inductors combined, therefore it was decided
they cannot be part of a low cost solution.

A simple gate driver circuit (often used in low cost brushless motor controllers) can be
made from a capacitor, a diode, a BJT transistor, and a couple of resistors. In the
switched-on mode the capacitor keeps the gate charged above the threshold voltage,
while in the switched-off mode the open-collector BJT transistor is activated, pulling the
gate voltage to an absolute low. During the switched-off mode, the diode is positive-
biased and keeps the capacitor charged and ready to drive the gate high after the tran-
sistor is released. After the MOSFET source terminal swings up, the diode-becomes
reverse biased in order to maintain the capacitor charge. See the updated circuit with
gate drivers in Fig. 21.

Capacitor and resistor values have been optimized empirically for the working frequency
to maximize efficiency. This involved finding a trade-off between shorter rise/fall times

25

V1

4V

V2

4V

V3

4V

V4

4V

L1

10µH

L2

10µH

L3

10µH

M1

M2

M3

M4

V5

V6

V7

V8

R1

1k

R2

1k

R3

1k

M
5

M
6

M
7

M
8

M
9

M
10

V9
0

V10
0

V11
3.3

R4

1k

R6

1k

R7

1k

C1

1µ

C2

100n

C3

100n

C4

100n

D5

D

D6

D

D7

D

D8

D

Q1

NPN

R0

1k

Q2

NPN

Q3

NPN

Q4

NPN

R8

1k

R9

1k

R10

1k
C5

1µF

R11

10k

D9

D

C6

1µF

C7

1µF

D10

D

D11

DR13

10k

R12

10k

Q5

NPN

Q6

NPN

Q7

NPN

R14

1k

R15

1k

R16

1k

R5

1k
R20

100

R22

100

R23

100

R17

10k

R18

10k

R19

10k

R21

100

V2

V3

V1

V
2

V
3

.tran 0 216u 36u

Figure 21: Ground-referenced power supplies represent actual controller outputs

with higher leakage currents and longer rise/fall times with higher switching losses. Leak-
age currents represent wasted power in the driver resistors while switching losses repre-
sent wasted power in the MOSFETS when they are not fully turned on and have a high
series resistance.

4.1.1 Key Components

With a 5A final peak current requirement (for approximately 1A balancing currents),
parametrized searches on farnell.com and digikey.com were made in order to find the
best available parts.

Desirable inductor properties:

• High saturation current

• Low series resistance

• Low cost, weight and size

Desirable MOSFET properties:

• Low on-state resistance (correlated with high current capability)

• Short rise and fall times

• Low threshold voltage

• Low cost

After numerous trade-off decisions, the following key parts were selected:

• MGV1004100M-10 inductor, 10µH, 36mΩ, 6.8A, 0.5− 1.5EUR

26

• NTMFS4926NT1G n-channel MOSFET, 5.6mΩ, 44A, 30V, 5−40ns, 0.15−0.25EUR

While the exact cost of the circuit is difficult to tell as it heavily depends on the volume of
parts purchased, we can safely state that the bill of materials is under 15 EUR even at a
very low production output.

4.2 PCB Layout

The layout has been designed in Altium CircuitMaker - a free, community based version of
Altium Designer (Fig. 23 and Fig. 24). The schematic has also been re-written to include
all the necessary details (Fig. 22).

Title

Number RevisionSize

A

Date: 5/11/2016 Sheet of
File: Sheet1.SchDoc Drawn By:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

J2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

J3

vin

p3
p4
p5
p6
p7
p8
p9
p10
p11

GND
vcc

vcc
GND

p15
p16

p27
p26
p25

1
2
3
4
5

J1

L1

L2

L3

R5

R6

R7

C1

R1

R2

R3

R4

C2

C6

C5

C4

R15

R16

R14

C3

R21

R20

R19

R27

D1

D2

D3

D4

D5

D6

v2

v3

v4

v1

v1
v2
v3
v4

R8
50K

R9
10K

R10

R11

R12

R13

R17

R18

v1 v2 v3

adc4adc3adc2adc1

v4

GND

v3

v4

v4
v4

v4

v3

g3

g2

g1

Q16

Q15

Q14

GND

GND

GND

R24

R25

R26

pwm4

pwm3

pwm2

pwm1

Q11 Q12 Q13

GND GNDGND

pwm1

pwm2

pwm3

pwm4

adc1
adc2
adc3
adc4

R23 R28R22

g1 g2 g3

sw1 sw2 sw3

p24

sw1
sw2
sw3

v2

GND

GND

4

5 1, 2, 3

Q1

4

51, 2, 3

Q4

4

51, 2, 3

Q5

4

5 1, 2, 3

Q3

4

5 1, 2, 3

Q2

4

51, 2, 3

Q6

4

5
1,

2,
3

Q9

4

5
1,

2,
3

Q8

4

5
1,

2,
3

Q7

4

5
1,

2,
3

Q10

GND

Figure 22: PCB schematic

4.3 Assembly

The PCB was CNC milled and the components manually soldered (Fig. 25a and Fig. 25b).

27

Figure 23: PCB project view

(a) top (b) bottom

Figure 24: PCB gerber masks

(a) top (b) bottom

Figure 25: Assembled PCB

28

5 Performance Testing

5.1 Static measurements

Measurements were performed with 4 current limited power supplies acting as battery
cells. A power resistor was put in parallel with the balancing circuit, draining a con-
stant offset current in order to prevent negative current injection into the power supplies
(Fig. 26). Gate drive pulses were probed with the oscilloscope in Fig. 27. Given that
the voltages were all adjusted and regulated to 4V, the port currents are equivalent to
transferred power, so we can compute the power efficiency as:

η =

∑
Icharge∑
Idischarge

Average currents were measured in each of the 4 ports in two different modes and at
different duty cycles (Fig. 14). The measured power efficiency is lower than the simulated
values in the 70-85% interval. The cause for this are switching loses at levels higher than
expected, due to a number of reasons that required additional time to correct:

• gate drive transistors were not dimensioned properly and overheated

• gate drive diodes overheated for similar reasons

• gate drive pull-up resistors overheated

The overheated junctions threw the characteristics outside their intended range, resulting
in increased MOSFET gate rise and fall times that determine switching losses.

Although parts rated for higher currents can solve the overheating problem and bring the
efficiency closer to the simulation, a better solution would be to use transistor-transistor
gate drivers instead of transistor-resistor charge pump gate drivers. The new solution
would involve multiple BJT transistors for each gate driver.

Figure 26: Lab measurement setup

29

Figure 27: Control pulses with complementary activation and deadtime

i mode I1 I2 I3 I4 Ic Id η

1 DCCC -0.39 0.05 0.05 0.06 0.16 0.39 41%
2 DCCC -0.90 0.14 0.13 0.15 0.42 0.90 46%
3 CDDC 0.11 -0.20 -0.20 0.11 0.22 0.40 55%
4 CDDC 0.41 -0.69 -0.69 0.41 0.82 1.38 59%

Table 14: Balancing currents

6 Conclusions

Balancing currents up to 90% of the designed values have been achieved at efficien-
cies of 40-50% compared to 70-80% in the simulation. Future work can apply certain
improvements to the implementation and achieve the intended efficiency while also pos-
sibly extend the controller logic to support more than 4 battery cells. Despite providing
only a rough analysis, the thesis proved that the new balancing topology is a promising
low-cost solution for efficiently balancing Li-Po battery packs of up to 4 cells, and can be
considered for further development.

30

A APPENDIX

A.1 Firmware code

https://gitlab.com/dorinclisu/active-cell-balancing/tree/master

A.2 Acronyms

A/D Analog/Digital
ADC Analog to Digital Converter
BJT Bipolar Junction Transistor
CAN Controller Area Network
CPU Central Processing Unit
FET Field Effect Transistor
GPIO General Purpose Input Output
I/O Input/Output
IC Integrated Circuit
I2C Inter-Integrated Circuit Interface
LSB Least Significant Bit
MOSFET Metal Oxide Semiconductor FET
MCU Microcontroller
PCB Printed Circuit Board
PWM Pulse Width Modulation
SNR Signal to Noise Ratio
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
USART Universal Sync/Async Receiver/Transmitter
USB Universal Serial Bus

31

https://gitlab.com/dorinclisu/active-cell-balancing/tree/master

References

[1] Pablo Cassani, Modeling, Design, and Implementation of a Novel Battery Cell Equal-
izer for Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles, Concordia Uni-
versity, Canada, 2009.

[2] Haifeng Dai, Xuezhe Wei, Zechang Sun, Daizhuang Wang, A novel dual-inductor
based charge equalizer for traction battery cells of electric vehicles, International
Journal of Electrical Power & Energy Systems, Vol.67, 2015.

[3] M. Zahran, Charge Equalization Unit for a NiCd Battery of Small Earth Observation
Satellite EPS Simulation, 7th WSEAS International Conference on Power Systems,
Beijing, 2008.

[4] Matteo Zanibellato, Analysis of Charge Balancer System, University of Applied Sci-
ences Regensburg, Germany, 2012.

[5] Carl Bonfiglio, Werner Roessler, A Cost Optimized Battery Management System
with Active Cell Balancing for Lithium Ion Battery Stacks, IEEE 978-1-4244-2601-
0/09, 2009.

[6] Sihua Wen, Cell balancing buys extra run time and battery life, Texas Instruments
Analog Applications Journal, 2009.

[7] James Moran, PowerPumpTMBalancing, Texas Instruments Application Report,
2009.

[8] Stanislav Arendarik, Active Cell Balancing in Battery Packs, Freescale Semiconduc-
tor Application Note, 2012.

[9] Linear Technology Corporation, High Efficiency Bidirectional Multicell Battery Bal-
ancer, LTC3300-1 Datasheet, 2013.

[10] Atmel Corporation, AVR121: Enhancing ADC resolution by oversampling, Rev.
8003A-AVR-09/05.

[11] STMicroelectronics N.V., STM32F103xx advanced ARM R©-based 32-bit MCU Ref-
erence Manual RM0008, DocID13902 Rev 16, 2015.

[12] STMicroelectronics N.V., STM32F103xx Datasheet, DocID13587 Rev 17, 2015.

[13] Everett Rogers, Understanding Buck-Boost Power Stages in Switch Mode Power
Supplies, Texas Instruments Application Report, SLVA059A - March 1999.

32

	Introduction
	Circuit Design
	Controller Selection
	Novel Topology Details
	Charge Transfer Modes
	CDDD
	DCCC
	CDCC
	DDCD
	DDCC
	DCDC
	CDDC
	DCCD

	Modes Overview
	Optimum Algorithm

	Microcontroller Firmware
	ADC Accuracy
	PWM Speed and Resolution

	Circuit Implementation
	Practical details
	Key Components

	PCB Layout
	Assembly

	Performance Testing
	Static measurements

	Conclusions
	APPENDIX
	Firmware code
	Acronyms

